Home

Applications

APPLICATIONS OVERVIEW
DRUG DISCOVERY
ADME-Tox
Biochemical Assays
Cell-based Assays
HTS and Secondary Screening
Microsampling
Protein Crystallography
RNAi
Sample Management
CANCER RESEARCH
Personalized Medicine
Functional Screening / DSRT
RNAi
Sequencing
Single-cell Genomics
GENOMIC RESEARCH
Gene Expression
Genotyping
Microbiome
qPCR
Sequencing
Single-cell Genomics
Synthetic Biology

Products

LIQUID HANDLING
LIQUID HANDLERS OVERVIEW
Echo® 525 Liquid Handler
Echo® 555 Liquid Handler
Echo® 550 Liquid Handler
Echo® 520 Liquid Handler
AUTOMATION
AUTOMATION OVERVIEW
Access™ Laboratory Workstation
Tempo™ Automation Control Software
SOFTWARE APPLICATIONS
SOFTWARE OVERVIEW
Echo® Array Maker
Echo® Cherry Pick
Echo® Combination Screen
Echo® Dose-Response
Echo® Plate Audit
Echo® Plate Reformat
CONSUMABLES
CONSUMABLES OVERVIEW
Echo® Qualified Microplates
Labcyte® Assay Microplates
MicroClime® Environmental Lid
Echo® Qualified Reservoir

Technology

Echo® Acoustic Liquid Handling
Dynamic Fluid Analysis™
Direct Dilution

News / Events

Labcyte BLOG
Upcoming Events
Press Releases
Labcyte in the News
Labcyte Community

Resources

JALA Special Issue
Publications
Articles and Other Media
Application Notes
Posters
Webinars
Videos
Customer Profiles
Core Labs

Support

Brochures
Web Documentation*
User Guides*
Quick Start Guides*
Specification Sheets
Site Prep Guides
Integration Models
Service and Maintenance
Request Information

Company

About Us
Echo® Acoustic Technology
Leadership Team
Careers
Contact and Location
Privacy Policy

SINGLE-CELL GENOMICS

Low-volume sequencing libraries from single cells

HOME | APPLICATIONS | Single-cell Genomics

Low-volume Sequencing Libraries from Single Cells

Echo Liquid Handlers miniaturize library preparation for whole genome and transcriptome analysis of genetic material from single cells. With precise, accurate, and non-contact transfer, Echo systems can reduce multiple displacement amplification (MDA) and RNA-Seq reactions by 75% or more. Libraries for next-generation sequencing (NGS) of RNA or DNA can be reduced to 10 µL or less.

Reduce reaction volumes and eliminate cross-contamination risk


Echo 525 Liquid Handler Echo® 525 LIQUID HANDLER

Single-Cell Genomics is essential for the understanding of genetic and epigenetic variations that occur throughout the life of an organism. For example, cancer research programs are relying on single-cell genomics to overcome the challenges with data derived from heterogeneous tumor samples by studying individual cell types within a population and rare cell events.

Amplification of DNA from a single cell is inherently susceptible to contamination. Exogenous DNA from tips or nozzles used during the transfer of samples or reagents into a PCR reaction cannot be resolved with UV-irradiation steps. The Echo Liquid Handler's non-contact acoustic transfer completely avoids contact with any DNA to drastically lower contamination risk. Furthermore, the precision and accuracy of transfer at low nanoliter volumes, also reduce ongoing reagent costs.

By combining the Echo Liquid Handler's low-volume acoustic transfer capability with library preparation kits for RNA or DNA sequencing, researchers can drastically increase the number of libraries generated per kit. By cutting transfer volumes by 75% or more and pooling libraries for sequencing without iterative dilutions, Echo systems can miniaturize and improve the quality of libraries prepared from single cells.

Key Benefits

  • Reduced operating costs through efficient assay miniaturization
  • Elimination of cross-contamination
  • Improved data quality with assay volumes as low as 250 nL
  • Integrated systems and software tailored for genomic assays


FEATURED PUBLICATION

Low-cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process

Low-cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process

by Amyris, Inc.
December 2014

Elaine B. Shapland, Victor Holmes, Christopher D. Reeves, Elena Sorokin, Maxime Durot*, Darren Platt, Christopher Allen, Jed Dean, Zach Serber, Jack Newman, and Sunil Chandran

Amyris Inc., *TOTAL New Energies USA, Inc.

VIEW / DOWNLOAD PDF





ABSTRACT: In recent years, next-generation sequencing (NGS) technology has greatly reduced the cost of sequencing whole genomes, whereas the cost of sequence verification of plasmids via Sanger sequencing has remained high. Consequently, industrialscale strain engineers either limit the number of designs or take short cuts in quality control. Here, we show that over 4000 plasmids can be completely sequenced in one Illumina MiSeq run for less than $3 each (15× coverage), which is a 20-fold reduction over using Sanger sequencing (2× coverage). We reduced the volume of the Nextera tagmentation reaction by 100-fold and developed an automated workflow to prepare thousands of samples for sequencing. We also developed software to track the samples and associated sequence data and to rapidly identify correctly assembled constructs having the fewest defects. As DNA synthesis and assembly become a centralized commodity, this NGS quality control (QC) process will be essential to groups operating high-throughput pipelines for DNA construction.