Biochemical Assays
Cell-based Assays
HTS and Secondary Screening
Protein Crystallography
Sample Management
Personalized Medicine
Functional Screening / DSRT
Single-cell Genomics
Gene Expression
Single-cell Genomics
Synthetic Biology


Echo® 525 Liquid Handler
Echo® 555 Liquid Handler
Echo® 550 Liquid Handler
Echo® 520 Liquid Handler
Access™ Laboratory Workstation
Tempo™ Automation Control Software
Echo® Array Maker
Echo® Cherry Pick
Echo® Combination Screen
Echo® Compliance Manager
Echo® Dose-Response
Echo® Plate Audit
Echo® Plate Reformat
Echo® Qualified Microplates
Labcyte® Assay Microplates
MicroClime® Environmental Lid
Echo® Qualified Reservoir


Echo® Acoustic Liquid Handling
Dynamic Fluid Analysis™
Acoustic Mass Spectrometry
Direct Dilution

News / Events

Labcyte BLOG
Upcoming Events
Press Releases
Labcyte in the News
Labcyte Community


JALA Special Issue
Articles and Other Media
Application Notes
Customer Profiles
Core Labs


Web Documentation*
User Guides*
Quick Start Guides*
Specification Sheets
Site Prep Guides
Service and Maintenance
Request Information


About Us
Echo® Acoustic Technology
Leadership Team
Meet Labcyte
Contact and Location
Privacy Policy

ARTICLES and Other Media

featuring the Echo® Acoustic Technology

121 Total Articles and Other Media


121 Total Articles and Other Media


TITLES and AUTHORS Year Link PDF + Abstract
  • Fueling Open-Source Drug Discovery: 177 Small-Molecule Leads against Tuberculosis Ballell L, Bates R H, Young R J, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V, Blanco D, Crespo B, Esc

    Institution: GlaxoSmithKline, North Carolina State University

    Publication: ChemMedChem, Volume 8, Issue 2

    2013 abstract

    With the aim of fuelling open-source, translational, early-stage drug discovery activities, the results of the recently completed antimycobacterial phenotypic screening campaign against Mycobacterium bovis BCG with hit confirmation in M. tuberculosis H37Rv were made publicly accessible. A set of 177 potent noncytotoxic H37Rv hits was identified and will be made available to maximize the potential impact of the compounds toward a chemical genetics/proteomics exercise, while at the same time providing a plethora of potential starting points for new synthetic lead-generation activities. Two additional drug-discovery- relevant datasets are included: a) a drug-like property analysis reflecting the latest lead-like guidelines and b) an early lead-generation package of the most promising hits within the clusters identified.

    Publication / Type:
    ChemMedChem, Volume 8, Issue 2
    Related Subject:
  • A New Approach to High throughput ADME Assay Screening Wang J, Segre G and Wu S

    Institution: Labcyte Inc., Quintara Discovery

    Publication: POSTER

    2013 PDF abstract

    Early ADMET assessment is expected to not only improve the overall quality of drug candidates, but also shorten the drug discovery and development process. Time-dependent CYP450 inhibition and metabolic stability assays are critical in identifying drug candidates that may have undesirable drug-drug interactions or sub-optimal pharmacokinetic properties. The cost of profiling these assays during early drug development with large numbers of compounds however, can dramatically increase the expense of drug discovery. One objective for pharmaceutical companies is to find less expensive, more reliable and higher throughput ADMET methods that can be moved upstream. Here, we present a miniaturization method using the Echo® liquid handler to evaluate ADMET characteristics. The Echo liquid handler uses non-contact acoustic energy to transfer low volumes compounds and reagents. This new method not only generates high quality and reliable IC50 and intrinsic clearance values, but also significantly reduces reagent costs.

    Publication / Type:
    Related Subject:
    High throughput ADME Assay Screening
  • Miniaturized Drug Sensitivity and Resistance Testing with the Echo® Liquid Handler and Access™ Workstation Edwards B, Jarman C, Wennerberg K, Yadav B, Pemovska T, Aittokallio T

    Institution: Labcyte Inc., Institute for Molecular Medicine Finland, FIMM, University of Helsinki

    Publication: Application Note C101

    2013 PDF abstract

    Recently identified associations between variants of cancer genes and drug resistance increase the value for comprehensive drug sensitivity and resistance testing in combination with molecular profiling of cancer cells. The measure of sample sensitivity or resistance to a drug requires high throughput screening of engineered cancer cell lines or samples directly from affected patients against combinations of anti-cancer therapeutics. Results are compared with genetic profiles in an attempt to determine the more effective treatment. Advancements in next generation sequencing and qPCR technologies persuade many research organizations to increase effort in these areas. In doing so, researchers immediately recognize screening efficiency as a critical factor to accurate and reproducible drug sensitivity and resistance testing. This application note discusses the implementation of miniaturized drug sensitivity and resistance testing, at the Institute of Molecular Medicine in Finland (FIMM), with assay-ready plates produced by the Echo liquid handler.

    Publication / Type:
    Application Note C101
    Related Subject:
    Miniaturized Drug Sensitivity Resistance Testing Echo® Liquid Handler Access™ Workstation
  • Drug sensitivity testing - new possibilities for personalised cancer treatment Riikola T, Turunen L, Kaunisto M

    Institution: Institute for Molecular Medicine, Finland

    Publication: VIDEO

    2013 abstract

    Commonly used cancer treatments are not always effective against malignantly transformed cells. Drug repositioning, the application of existing drugs not used currently against a given cancer, is a way to develop new treatments. In this film you can see how drug sensitivity testing, the process by which patient cells are examined experimentally for response in activity to various drugs, is done at the Technology Centre of FIMM, the Institute for Molecular Medicine, Finland.

    Publication / Type:
    Related Subject:
    Drug sensitivity testing cancer treatment
  • Miniaturization of the KASP™ Genotyping Assay for Maize with the Echo® 525 Liquid Handler Pierson A

    Institution: Labcyte Inc., Institute for Molecular Medicine Finland, FIMM, University of Helsinki

    Publication: APPLICATION NOTE - G105

    2013 PDF abstract

    Single nucleotide polymorphism (SNP) genotyping of maize samples is commonly performed in agricultural science to aide marker assisted selection, study heterosis and a variety of other biological behaviors. Its widespread adoption in agricultural science has been challenged with increasing reagent costs and labor intensive multi-step processes. Acoustic non-contact liquid handling using the Echo 525 liquid handler offers unique advantages to traditional processes by incorporating a tip-less solution to deliver reagents precisely and accurately. Assay miniaturization is enabled with high accuracy and precision at volumes as low as 25 nL. This study utilized the Echo 525 liquid handler to miniaturize a KASP genotyping assay for maize at a throughput meeting the demands of most high throughput production processes. The results demonstrate miniaturization with the Echo 525 liquid handler without compromising throughput targets.

    Publication / Type:
    Related Subject:
    Miniaturization KASP™ Genotyping Assay Maize Echo® 525 Liquid Handler
  • Miniaturized and High-Throughput Metabolic Stability Assay Enabled by the Echo® Liquid Handler Wang J, Segre G and Wu S

    Institution: Labcyte Inc., Institute for Molecular Medicine Finland, FIMM, University of Helsinki

    Publication: APPLICATION NOTE - D103

    2013 PDF abstract

    Early assessment of ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) properties plays a critical role in the optimization and prediction of pharmacokinetic behaviors of new chemical entities. Among the most important ADME assays is the in vitro drug metabolic stability
    assay. This assay evaluates the susceptibility of compounds to biotransformation or intrinsic clearance. Because an increasing number of compounds require metabolic stability evaluation, a high-throughput and cost-effective method is desirable during early drug discovery. In this application note, we discuss how the Echo liquid handler provides a platform for conducting a miniaturized high-throughput metabolic stability assay. The Echo liquid handler precisely and accurately transfers nanoliter volumes with acoustic energy in a completely contact-free manner. Thus high quality data can be obtained with a small fraction of the volume required by tip-based liquid handling methods.

    Publication / Type:
    Related Subject:
    Miniaturized High-Throughput Metabolic Stability Assay Echo® Liquid Handler
  • Precise Protein Crystallography with the Echo® 550 Liquid Handler Edwards B, Harris D, Datwani S, Barco J

    Institution: Labcyte Inc., Institute for Molecular Medicine Finland, FIMM, University of Helsinki


    2013 PDF abstract

    Acoustic transfer with the Echo liquid handler simplifies the small scale crystallography process by transferring reagents precisely at 2.5 nL increments. Using Dynamic Fluid Analysis™, the Echo liquid handler can adjust transfer settings on the fly on a well-by-well basis. This allows a single fluid class setting to be utilized for a wide variety of viscous and osmotic fluids, greatly simplifying the liquid transfer process. We demonstrate an expanded ability to transfer a wide variety of reagents from various protein crystallography sparse matrix screens. To enable the potential for on the fly grid screens, we demonstrate the precise transfer of viscous reagents (including high molecular weight PEGs) and organic solvents (including MPD).

    Related Subject:
    Protein Crystallography Echo® 550 Liquid Handler
  • Is Your Liquid Handling Misleading You? Olechno J


    Publication: Innovations in Pharmaceutical Technology June 2013 Issue 45 31-35 

    2013 abstract

    Selecting the most suitable liquid handling method can have a huge influence over your final results, particularly with miniaturised volumes. Acoustic liquid handling using the relatively new direct dilution technique may offer scientists greater accuracy.

    Publication / Type:
    Innovations in Pharmaceutical Technology June 2013 Issue 45 31-35 
    Related Subject:
    Serial dilution, Acoustic liquid handling, Dimethyl sulfoxide (DMSO), Pharmacophore
  • Flexible qPCR Assay Assembly Barco J

    Institution: Labcyte Inc., Institute for Molecular Medicine Finland, FIMM, University of Helsinki

    Publication: ARTICLE

    2013 abstract

    The Labcyte Echo 525 liquid handler enables exciting new capabilities for 384-well qPCR experimental setup in the 3–10 μL range. The low-volume transfer increment enables scientists to explore qPCR miniaturization without sacrificing data quality that may come with imprecise or inaccurate liquid transfer at low volumes. Positional accuracy allows accurate transfer without causing carryover in 384-well and 1,536-well formats. Superior volumetric precision ensures excellent cycle quantification even with very little target DNA in very low reaction volumes. The Echo 525 liquid handler enables scientists to fully explore the capabilities of miniaturized PCR and other genomics applications. Tip costs can be eliminated and reagent consumption reduced—without sacrificing data quality.

    Publication / Type:
    Related Subject:
    Flexible qPCR Assay Assembly
  • Exploring Low Volume Aqueous Acoustic Transfer Technology in High Throughput RT-PCR Application Lupotsky B, Holland-Crimmin S, Zeng X, Scavello G, Chang S, Wu B, Shah T, Patel A, Platchek M

    Institution: GlaxoSmithKline

    Publication: POSTER

    2013 PDF abstract

    As the landscape of drug discovery is continuously changing, so are the needs of GSK’s customers. Sample Management Technologies' (SMTech) and Screening and Compound Profiling (S&CP) are working with Acoustic Technology to implement a low volume 1536w source to dispense transcriptomics reagents (cell lysate, RNA, cDNA, primers, and master mix) to enable high throughput real time RT-qPCR application as a novel approach to drug discovery. The process is flexible and cost effective. Here we present data on testing the variables during Acoustic Dispensing, which support the feasibility of implementing RT-qPCR in drug discovery

    Publication / Type:
    Related Subject:
    Low Volume Aqueous Acoustic Transfer High Throughput RT-PCR Application

Featured Labcyte Downloads
For Research Use Only Not for use in Diagnostics