Miniaturizing siRNA Transfection Using the Echo® Liquid Handler

Carl Jarman¹, Connala Edwards², Emily Bennett², Ann-Marie Byrne², Antje Hoff², Gabor Bakos², Dermot Kelleher², Aideen Long², Anthony Davies²
¹Labcyte Inc., ²Trinity College

Abstract

Large-scale, high-throughput siRNA experiments require a transfer system that can facilitate reliable and reproducible transfections in high-density well-plate formats, as well as effective delivery of the siRNA molecule. This study demonstrates superior performance of the Echo liquid handler compared to more traditional liquid handling methods for standard, reverse and lipid-free transfection of siRNA molecules into mammalian cells.

Results of the study clearly demonstrate the ability of the Echo liquid handler to deliver comparable transfection efficiency, knock-down and cell morphology to reactions prepared using traditional pipeting methods. In fact, reactions prepared with the Echo liquid handler were miniaturized to use significantly less volume of siRNA and other reagents, and still yielded more representative inclusion intensities than traditional manual pipetting techniques. Such miniaturization can result in significant cost savings and greater confidence in the results from siRNA screening studies.
Standard transfection using siGLO® siRNA

This example compares the transfection efficiencies of cell-based assays that were prepared by acoustic liquid transfer using the Echo 555 liquid handler versus manual pipette dispensing. Since siGLO (Thermo Scientific) transfection indicators localize to the nucleus, they are often used to determine optimal siRNA transfection conditions or to monitor relative efficiency of delivery when co-transfected with siRNA. In this experiment we compare the transfection efficiencies of siGLO transfection indicator when it is transferred manually by pipette and using the Echo 555 liquid handler.

Methods

Echo liquid handler method: The Echo 555 liquid handler transferred volumes between 10 nL and 1000 nL of siGLO and DharmaFECT3 (Thermo Scientific) transfection reagent into a 96-well flat-bottomed microplate. The plate was then backfilled with 40 μL of serum-free RPMI medium.

Manual pipetting method: Dilutions of siGLO and transfection reagent were prepared in 20 μL volumes, and then each dilution was backfilled with an additional 20 μL of serum-free RPMI medium to the same final concentrations of siRNA as above.

Both methods were performed in triplicate for each concentration of siRNA and transfection reagent. The siRNA and transfection reagent mixture was incubated at room temperature for 20 mins before 160 μL KYSE cells were added to the wells. After 24 hrs incubation, the inclusion intensities of the cells were measured using an IN Cell Analyzer 1000 (GE Healthcare). Cells transfected with siGLO were also stained with nuclear stain Hoechst 33358 and imaged using fluorescence microscopy (Figure 1).

Results

The following data shows that transfections prepared using the Echo 555 liquid handler to transfer the siRNAs yielded stronger inclusion intensities and at lower concentrations than manually transferred siRNAs (Figure 2). Inclusion intensities in samples transferred using the Echo liquid handler are also more directly proportional to the amount of siGLO added than in manually transferred samples.
Reverse transfection using Bcl-xL siRNA

This example uses varying concentrations of Bcl-xL siRNAs and non-homologous scrambled nucleotide controls, followed by a cell proliferation (MTT) assay, to measure the effectiveness of the knockout of B-cell lymphoma-extra large (Bcl-xL; a mitochondrial transmembrane protein implicated in cancer cell survival).

Methods

Echo liquid handler method: The Echo 555 liquid handler transferred volumes between 5 nL and 500 nL of siRNA and DharmaFECT3 transfection reagent (Thermo Scientific) into a 96-well flat-bottomed microplate. The plate was then backfilled with 20 μL of serum-free RPMI media.

Manual pipetting method: Dilutions of siRNA and transfection reagent were prepared in 10 μL volumes, and then each dilution was backfilled with an additional 10 μL of serum-free RPMI medium to the same final concentrations of siRNA as above.

Both methods were performed in six replicates for each concentration of siRNA and transfection reagent, with and without deoxycholic acid (DCA; induces apoptosis). The siRNA and transfection reagent were incubated at room temperature for 20 mins before 80 μL SKGT4 cells (2.0×10^4) were added to the wells. The plates were incubated (72 hrs, 37°C, 5% CO₂), and then half of the wells were treated with 500 μM of DCA at 64 hrs incubation. The MTT assay was performed and absorbance was read at 570 nm.

Results

The overall cell proliferation responses were comparable in both transfer methods, exhibiting Bcl-xL knock-down with Bcl-xL siRNAs but not with the scrambled controls, and inhibition of cell proliferation with DCA (Figure 3).
Acoustic transfer for lipid-free transfection

This example evaluates the performance of acoustic liquid handling in lipid-free transfection. We used Accell siRNAs (Thermo Scientific), which are chemically modified to promote cellular uptake and eliminate the need for conventional lipid transfection reagents.

Methods

Accell siRNA plates were reconstituted with siRNA buffer and delivered into daughter plates (pre-coated with goat anti-mouse IgG and anti-LFA-1 to enable cell migration), using a multichannel pipette and the Echo 555 liquid handler. Peripheral blood T-lymphocytes in Accell siRNA delivery medium were added to each well, and the plates were incubated for 72 hrs at 37°C, 5% CO₂. The cells were fixed, permeabilized, and stained with Hoechst 33358 and phalloidin TRITC. Acquisition and analysis was performed on the IN Cell Analyzer 1000. Data were normalized and scored using HITs, a modified version of CELL HTS software created at Trinity College (Boutros et al. Science 303:832, 2004).

Results

To compare the impact of the siRNA transfections on cell morphology, five morphological factors were scored using HITs:

- Cell 1/form factor: a measure of roundness that incorporates cell area and perimeter complexity.
- Cell area: the two-dimensional surface area enclosed within a boundary.
- Nuclear displacement: the position of the nucleus relative to the cell’s centroid.
- Cell gyration radius: the spread of a cell, defined as the square root of the mean squared distance between the cell periphery and its center of gravity.
• Cell elongation: length versus breadth of the cell. Both acoustic liquid handling and manual transfer methods successfully identified siRNAs that target proteins that are known to influence T-cell migration.

Both methods of delivery successfully identify siRNAs that target proteins that are known to influence T-cell migration (Figure 5).

Figure 5
Comparison of five cell morphology factors in transfections prepared using the Echo 555 liquid handler (top) and a manual pipettor (bottom). Red indicates activation of the given morphology factor as a result of siRNA transfection; blue indicates repression.

Figure 6 shows the scored results for cell 1/form factor for both dispensing methods.

Figure 6
Scored results for cell 1/form factor in 80 wells from each dispense method, depicted in Figure 5. Echo 555 liquid handler (left) and a manual pipettor (right). Row 1 is non-migrating poly-L-lysine negative control.

Summary

The Echo liquid handler enables miniaturization of a number of RNAi assays. In standard siRNAs to Bcl-xL, acoustic liquid transfer had no detrimental effects on the siRNA transfection or knock-down. In lipid-mediated transfection, acoustic liquid transfer yielded more accurate inclusion intensities and dose-response curves than manual transfer. Finally, in lipid-free transfection, acoustic liquid transfer enabled successful identification of siRNAs known to influence T-cell migration.